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TECHNICAL MEMORANDUM X-64671

PROBABILITY OF SATELLITE COLLISION
SUMMARY

A technique for computing the probability that a collision will occur
between a given satellite (target satellite) and any one of the total population
of debris satellites is presented. This method is restricted to near-circular
target satellite orbits. The following assumptions were made:

1. The satellite sample consists only of objects trackable by North
American Air Defense Command (NORAD).

2. The satellite population remains static as of a certain epoch.

3. Effects of aerodynamic drag, solar wind, and deliberate propulsive
maneuvers are neglected.

4. The target satellite and debris satellite ascending nodes are random
over 360 deg.

5. The arguments of perigee of the debris satellites are random over
360 deg.

6. The position of lapping between the target satellite and each debris
satellite is random over 360 deg.

7. The radius of apogee, radius of perigee, and inclination of each
debris satellite and the target satellite remain constant.

In order to make the probability calculations, each debris satellite was analyzed
separately, and the total probability of collision was determined from the
individual probabilities of each debris satellite.

A realistic sample problem (the proposed modular Space Station) is
presented to provide further insight into the collision problem. A satellite
sample of September 1970 containing 1805 objects was used. For a Space
Station mission of 10 yr and an inclination of 55 deg, the collision probability
varied from approximately 0. 01 to 0. 04 over the altitude range being considered
for the Space Station.

The results of a parameter study to determine what types of debris
orbits (size and shape) contribute a large part to the total collision probability
are given. Near-circular orbits which cross the target vehicle altitude con-
tribute the most to the total collision probability.



INTRODUCTION

Man's understanding of his environment has advanced significantly
with the advent of artificial carth satellites as remote sensing devices. When
these instruments are launched into earth orhit, there is usvally some debris
(payload shrouds, explosive bolt fragments, spent stages, cte.) which
accompanies them. The rate at which these objects (payloads and debris)
have been placed into carth orbit has exceeded the rate at which they have
fallen back to carth (due to orbital dccay), affecting a continual growth in the
total number of artificial carth satellites. NORAD has identificd 2588 objects
in earth orbit as of October 31, 1971 [ 1]. If the present trend continues,
this number will continue to grow.

In view of this large and increasing satellite density in earth orbital
space, the guestion arises as to the probability of a collision between two of
the satellites. This question has particular significance for manned missions
since crew safety is always a high priority item. The protection of expensive,
unmanned salcllites (communications, meterological, cte.) against collision
with other objects would also be desirable. Decisions with regard to ""safe"
altitudes or necessity of collision avoidance systems mighi be intimately
dependent on a realistic assessnent of the collision hazard.

This report prescnts a method of determining the probability that a
given satellite (target satellite) will collide with any other satellite (debris
satellite) in earth orbit. The computational technique is described in general
terms in the text, and a rcalistic sample problem (the proposed modular
Space Station) is analyzed to provide further insight into the collision problem.
The equations are derived in the seven appendices.

PROBLEM DESCRIPTION

The method of computing collision probability for a single debris
satellite with a target satellite is first shown, and is then extended to include
the entire debris satellite population.

Figure 1 shows an impending collision between the target satellite and
a debris satellite. Clearly, a collision possibility exists only in the vicinity
where the paths of the two bodies intersect (within A¥ /2 as shown). This
implies that both bodies must be close to the line of intersection between the



orbit planes and that their altitudes be nearly the same. Further, both

bodies must be there at nearly the same time. A collision is possible only

at such times that one body is in the process of lapping the other body (lapping
is the acquisition of a zero phasec angle between the objects) .

Earth Center

Debris Path

Line of ‘
Intersection

Target Path

Target Raonge of Target Positions for
g Which Collision Is Possible

Satellite

Debris Sateilite

Figure 1. Orbital geometry for a collision
situation between two orbiting objects.



In this study, the target satellite is simulated as a sphere of radius R.
The dimensions of the debris satellite are neglected explicitly, but can be
accounted for in an actual case by increasing the radius of the target sphere
by an appropriate amount. If the debris satellite touches or intrudes into the
. sphere representing the target satellite, then a collision is defined. The
immediate problem, then, is to determine the probability that this will occur.

MATHEMAT ICAL FORMULAT ION

For this problem, it is convenient to define a coordinate system at
the center of the target satellite as shown in Figure 2. This coordinate
system will be referred to as the "'relative' coordinate system. The y axis
of this system remains in the direction of the position vector ﬁt’ and the

z axis is in the direction of the momentum vector ﬁt X \_/t. The x axis is

a curvilinear axis which is tangent to the orbit path and remains parallel to
the local horizontal. Defining the relative coordinate system in this way
restricts this study to circular orbits for the target vehicle.

Earth Center

€
o
/O
=<l

X
Target Satellite Path/

Figure 2. Relative coordinate system.

Target Satellite

For specified orbits and a given mutual orbit plane orientation (specific
values of inclinations, arguments of perigce, and ascending node separation),
the velocity of the debris satellite as it passes through the orbit plane of the
sphere can be determined in the relative coordinate system (Appendix A).

If the path of the debris satellite is approximated as a straight line in the
vicinity where collision is possible, then the direction of this relative velocity



vector represenis the divection of the trajectory of the debris obicet. When
this trajeciory passces through the target sphere, a coﬂ.ision QUCULS,

he debris satlellite has an opportunity to puss through the ~phere only
when lapping between the two objects is occurring. 'This is made clearer by
examining IFig. 3 which shows an inertial view of the paths of the debris and
target satetlites.  Assume that the targel satellite is in position T when the
debris satollite pusses through the target arbit pline. TE the peeiod of the
target sitellite is less than the period of the debris satelliie, then the
satellite will have traversed a complete orbit plus some distance AS (position
2) al the titne the debris satellite passes through the tirget plane aenin.

Therefore, with cach suecessive orbit of the debris satellite, the target
satellite nppronches AS closer to the position in its orbit @t which o collision

can occir.  This some iden is illustrated in Fig. 4 with z't\\'[)a‘-t‘i fo the relative
coordinate syvsicn, This ligure shows the debeis sateilite possivg through the

¢

targel ovbit lane at an altitude difference ot v . With u::f.:h crbital period,
¢

the debris salellite passes through the torget pluue AS closer fo the sphere.

-

tn this velative refereuce frame (Fig, 43 theve ave cortain chavac-

teristics common o each debris satelliiie pass throveh the & it plane:

Fo The vidue of y (the altitude difference hHotwee two boedies) is
¢

approxiveitely the sime each pass, The veason o this is thad the altifude

of the debeis object during passage iz determined by the position of the inter-
seetion line in the debris orbit, which in turn is delermined by the argument

T

ol perigee (the ungle between the ascending node and the Jine of per ,ge ).
3 oblale-

Poerturbations in areument of perigee due to the effects :
o E e
Hess nre loo stipght to cause sionificant changes iny | firom one puss Lo another.

2. The divection in which the debris satellite is tinveling as it passes
through the target piane remains approximatcely ih

rom passage to

passage.  The sume reason given tor item 1 ab
a erven angle between the orbit planes, the directi
the sarellite' s ipht path angle and the Might puth angle darimye pasan
frnetion of argument of perigee.

80 Zi.p;vili‘s here since, for

Aby s u constant because,
i orbits of

3. The distance between successive passoes
s stated carijer, this study is restricted o cix AL
satedlite. The path speed of the targetl satlellite in civeddar orbits is a -J(»n%att
veriod of the s

thus, ithe net change in its position during one orbitn!
ooject wit! remain constant.

n
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4. The path of the debris satellite is almost a straight line in the
vicinity of the target plane where collision is possible (at least a distance
2R from the target plane).

Assuming that the debris satellite's R, and Rp remain constant, the

A
value of y d depends upon the orientation of the major axis of the debris satel—

lite' s elliptical orbit with respect to the line of intersection; i.e., y d depends

upon the '""true anomaly'' of the line of intersection as measured in the debris
satellite orbit plane (Fig. 5). Most orientations, as represented by the
dashed line in Figure 5, will cause y d to be of such a value that it would be

impossible for the trajectory of the debris satellite to pass through the target
sphere. However, when the intersection line occurs within some interval of
true anomaly, An, approximately the position of equal altitudes (the shaded
area), a non-zero collision probability exists and can be calculated in the
following manner. As shown in Figure 6, there will be a certain interval (d)
along a line parallel to the relative x axis, such that if the trajectory of the
debris object intersects the target orbit plane within this interval, the trajectory
will pass through the target sphere. The exact value of d is dependent upon the
value of y q and the three-dimensional direction that the debris satellite is

traveling. The derivation of d is given in Appendix B.

Once this collision distance (d) has been calculated, the probability
of collision can be calculated in the following manner. In Figure 6, the
successive debris passes through the target orbit plane are shown occurring
at particular positions along the relative x axis. The exact positioning of
these passes is actually unknown and is therefore considered to be completely
random. That is, the debris satellite passes can be shifted any amount up to
a distance of AS (after which any subsequent shift produces positions which
are a repeat of a previous position), and each of these positions is equally
probable to occur.

To gain insight into how the probability of collision can be calculated
from this, consider the following example. Assume that the interval AS is
divided into six equal segments of length Ax (Fig. 7) and that there are a
large number of cases (say 1000) of a debris satellite passing through the
target plane in any random position within AS. This quality of randomness
dictates that the same number of passages are possible in each Ax interval,
because passage through any segment of AS is equally probable with passage
through any other segment of equal length. In Figure 7, Ax= AS/6. Let
m be the number of cases which can occur in the interval Ax out of the total
number of cases, n, which occur within AS. Then

(1)

m=

o=
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Equation (1) is for a 4x cqual to (1/6) AS. For any size Ax

n
MURASTAN (2)
and
m  Ax (3)
n  AS

A fundamental definition of probability is as follows: If there are n mutually
exclusive, exhaustive, and equally likely casces, and m of these are favorable
to an cvent A, then the probability of A is m/n. Since cquation (3) holds for
any Ax, it holds when Ax = d. By the above dcfinition, the probability that
the debris satellite will pass within the interval d is

. - m d
lap n AS

(4)
Since the debris satellite has a single chance to pass through the interval d

each time the debris and target satcllites lap each other, P is the proba-

hility per lap. lap
- As -
Ax
)
// // e // ’ X

Figure 7. Geometrical explanation of collision probability expression,

11



Equation (4) was developed for a given mutual orbit plane orientation,
(the assumption was made that inclinations, arguments of perigee, and node

separation angles were known). The quantity, d, and therefore Plap’ is a

function of these quantities. The perturbation rates (becausé of the earth's
oblateness) of node separation and argument of perigee are great enough so
that it is impractical to maintain up-to-date measurements on these quantities.
Therefore, for a given time (at which it is desired to compute a collision
probability), it is assumed that node separation AQ and argument of perigee
w are unknown and that all values of these angles between 0 deg and 360 deg
are equally probable. Rewriting equation (4) as functions of these variables
yields

_d(w, AQ)
Plap B AS (5)
For each value of AQ , only a very restricted range of values of w will yield
a non.-zero value for d; hence, for most values of w, P = 0., The average

lap
collision probability per lap over node separation and argument of perigee is
1 2r 2w (6)
— — 6
Plap e Of (){ Plap dw d(AQ) .

An attempt was made to perform the double integration in equation (6)
analytically. Since this attempt was not successful because of the complexity
of the probability expression, the expression was numerically integrated by
the trapezoidal method on a digital computer. Numerically integrating equa-
tion (6) over both variables required an excessive amount of computer time
because these calculations must be made for each debris satellite in earth
orbit (about 2400 presently) . This problem was circumvented (losing very
little accuracy) by noting, after several numerically integrated runs, that
the plot of probability as a function of argument of perigee, w , manifests
itself as four humps which resemble half ellipses (Fig. 8). The reason for
the four humps is made clearer by referring to Figure 5. Varying the argu-
ment of perigee, w, from 0 deg to 360 deg has the effect of varyingn, the
orientation of the line of intersection between the two orbit planes relative
to the position of the debris satellite perigee. The sum of w and
n is the argument of latitude (measured in the debris orbit plane) which
remains constant for a given AQ2, The shaded areas in Figure 5 are the
range of intersection line positions where a non-zero collision probability
exists. Each of these orientation ranges occurs twice whenn (or w) is
varied from 0 deg to 360 deg when

12
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1. is between and
n nq n r

and
2. 7 is between 180 + nq and 180+ 17 .
r

If the integral of this function (Fig. 8) is approximated as the area of
two ellipses, then only the probability as a function of node separation need
be numerically integrated. The method of determining the dimensions of
the humps for the area calculations is described in Appendix C. A mathe-
matical justification for the use of this ellipse approximation is given in
Appendix D.

A few very special cases (debris orbits) produce a probability versus
w curve having a shape similar to the one in Figure 9 and must be numeri-
cally integrated. The elliptically shaped humps become distorted so that the
area under one of the humps can no longer be approximated as the area of a
half ellipse. These types of curves are generated when either the apogee or
perigee of a debris satellite orbit is very near (within a few diameters of
the target sphere) to the altitude of the target satellite. The humps are
actually connected as in Figure 9-b when the altitude of apogee or perigee
falls within the radius of the target sphere. Cases like these for which the
elliptical approximation does not hold are numerically integrated over argu-
ment of perigee. Very little additional computer time is required since only
a few (usually less than 10) cases like these are encountered for any given
target satellite altitude. -

The probability that the debris satellite (the jth satellite) will collide
with the target satellite at least once within any duration mission (Pm) can

be calculated once the probability for each lap in the mission, [l—jlap (equation

6)] is known by using the following equation:

) , (7)

where

L = the total number of laps that occur between the target satellite
and the debris satellite.

The probability that the target satellite will collide with any one of the debris
satellites is

15



where
k = the total number of debris satellites in earth orbit.

Equations (7) and (8) are derived in Appendices E and F, respectively.

SAMPLE PROBLEM

The problem of collision with debris satellites takes on special
significance for the proposed modular Space Station because the expected
mission duration of 10 yr and the large Space Station dimensions provide
much greater exposure. An an-~lysis of the collision hazard of the Space
Station is included to illustrate tiie « ~-: of the computational technique and to
provide additional insight into the collision problem.

The launch and operation of the modular Space Station are still some
years away. The satellite population in existence at the time the mission is
in progress will obviously determine the collision probability. However, future
satellite populations are difficult to predict since the satellite launch rate
depends on economic, political, and military factors. Therefore, an arbi-
trary launch date and a static satellite population were assumed. The satel-
lite sample used in this analysis was the population and distribution in exis-
tence as of September 1970. This satellite sample contains only objects
which are tracked by NORAD. The sample contains 1805 objects, but a
collision is possible only with those objects which cross the Space Station's
altitude.

RESULTS

The total collision probability was calculated for a range of Space
Station altitudes from 200 km (108 n. mi.) to 1400 km (756 n. mi.) consider-
ing the entire satellite population. The results are shown in Figure 10. In
generating these results, the Space Station inclination was held constant at 55
deg and the mission duration was assumed to be 10 yr.

16
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I'he Space Station was represented as a sphere with a radius of
50 m. Although the actual size and configuration of the Space Station had
not been finalized at the time of this study, the assumptlion was made, based
on current design proposals, that a miss distance of 50 m from the center
of the Space Station would represent either a collision or a very near miss,
Therefore, the results in Figure 10 can be interpreted to be the probability
that a debris satellite will intrude within a 100-m-diam sphere at least once
during a 10-yr mission. A more detailed plot of the same data is given in
Figure 11. In this figure the number of debris objects which cross the vari-
ous altitudes is plotted. The general trend of the collision probability is
to increase as the number of satellites increases. [igure 12 is a plot of
collision probability versus Space Station inclination. The altitude of the
Space Station was held constant at 500 km (270 n. mi. ).

The collision probabilities presented in Figures 10, 11, and 12
must be regarded as minimum values, since therc is considerable debris in
earth orbit which is not trackable by NORAD duc to the small size or the
low reflectivity of the object.

A parameter study was performed to determine the types of debris
orbits (size and shape) which contribute a large part to the total probability.
Figure 13 shows the effect of varying perigee for constant apogee altitudes
and Figure 14 is the result of varying apogee for constant perigee altitudes.
The inclination of each debris orbit wus held constant at 0 deg. The collision
probabilities in these figures are not total probabilitics but are individual
satellite probabilities. These curves show that the largest contributions to
the total collision probability are made by debris whose orbits are nearly
circular and near the Space Station altitude. In other words, the closer the
apogee or the perigee approaches the Space Station altitude, the higher the
probability that a collision will occur (neglecting the cffect of inclination).

Figure 15 shows an expanded view of the peak of one of the curves
of Figure 13. The collision probabilily recaches a peak and diminishes to
zero as the satellite perigee passes through the altitude band of the sphere.
The same trend is also present in Figure 14 as apogcee passcs through the
altitude band of the sphere.

Encountering some near-circular debris orbits at the various
Space Station altitudes is the cause of the scattered cffcet in the data of
Figures 10 and 11. The "'spikes' in the data of Figure 12 at certain Space
Station inclinations arc caused by the possibility (for some nodal orien-
tations) for the Space Station to be coplaner with the debris satellite but
rotating in the opposite direction. This situation manifests itself in equation
(4) as an unusually large value for d.

18
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Probobility of Collision
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Figure 13. Probability of collision with individual debris objects

as a function of perigee altitude of the debris orbit.
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Probability of Collision
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Figure 14. Probability of collision with individual debris objects
as a function of apogee altitude of the debris orbit.
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The effect of the out-of -plane angle, 6, on the collision probability is
illustrated in figures 16 and 17 for a few typical debris orbits. These curves
show that the collision probability is greatest when the debris orbit is coplaner
with the target orbit. As 6 approaches zero degree a somewhat abrupt increase
in collision probability occurs compared to a gradual increasc as 6 approaches
180 deg (retrograde coplaner orbits). The major reason for this trend is the
orientation of the relative velocity vector as a function of 6. In general, high
probabilities result when the relative velocity vector (and thus the trajectory
of the debris object) is almost parallel to the direction of travel of the target
satellite; that is, when its direction cosine is a maximum. Since the incrtial
velocities of the two objects are generally of the same order of magnitude, a
small change in 6 from zero degree immediately causes the relative velocity

vector (roughly {/_d - Vt) to assume a large angle with the path of the target

vehicle. This acute ungle gradually decreases as 6 varies to 180 deg (the
retrograde position) where the relative velocity vector is again nearly parallel
to the direction of travel of the target vehicle.

The collision probability was parameterized over miss distance
(Fig. 18) and mission duration (Fig. 19). These curves emphasize that
using large vehicles in earth orbital missions of long duration result in high
collision probabilities. In Figure 18, the linearity and slope of the logarith-
mic plot at lower probabilities (less than 0.5) show that the collision probabi-
ity is approximately proportional to the square of the miss distance. For
example, if the miss distance is doubled from 50 m to 100 m, the collision
probability is increased approximately four times. This curve indicates
that it is almost a ccrtainty that a trackable object will pass within 1/2 km
of the Space Station at least once during the 10-yr mission. Figure 19 shows
that the collision probability is linear with mission duration. The circled
point on Figures 18 and 19 represents the proposed Space Station mission.

CONCLUSIONS

If the present trend in satellite population growth continues, the colli-
sion hazard to men and cquipment in carth orbit will become more and more
severe. It seems inevitable that eventually the development and utilization of
a collision avoidance system will become mandatory. Indeed, collision
probabilities for the proposed modular Space Station of 0.01 to 0.04 (for the
altitudes being considered) may indicate an immediate need for such a system.
Some alternatives (or additions) to the above remedy are (1) siricter controls
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Figure 18. Total collision prohability for Spacc Station as a
function of miss distance (target sphere radius).
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on the amount of debris placed in orbit from a single launch, (2) the reser-
vation of certain altitudes for manned vehicles or other satellites requiring

collision protection, and (3) restrictions on the rate of launching objects
into earth orbits (nationally and internationally).
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APPENDIX A

DERIVAT ION OF RELAT IVE VELOCITY COMPONENTS X, Y, Z
AND ORIENTATION ANGLES OF DEBRIS PATH o AND s

Suppose the origin of a nonrotating right-handed system of axes is
placed at the center of the earth and is defined to be an inertial reference
frame. The origin of the relative coordinate system (Fig. 2) moves at a
velocity (with respect to the inertial frame) equal to the velocity of the target

sphere (Vt) . The immediate objective is to transform the inertial velocity

vector of the debris satellite into the moving coordinate system.

The x-axis of the relative coordinate system was specified in the text
as being a curvilinear axis along the path of the target vehicle. To simplify
the vector transformation, the curvilinear system can be replaced by a rec-
tangular Cartesian coordinate system where the y and z axes remain the same
but the x-axis is tangent to the path of the target satellite. This allows the
use of the standard transformation between two rectangular Cartesian coor-
dinate systems, one fixed and one moving. Very little accuracy is sacrificed
by doing this since computations of the relative velocity components are
required only in the vicinity where a collision is possible, that is, near the

d d
origin (within the interval - = = x = -Z—) of the relative coordinate
system. Under this constraint, the difference between the Cartesian system

and the curvilinear system is negligible.

By using the standard transformation between the two coordinate
systems, the velocity of the debris satellite in the inertial system can be
written as

v = kY2 v + i’ P A-—l
\'% d Vr + ¢ ¢ X p ] ( )
where
i/—r = the velocity of the debris object in the relative coordinate system.
—p—z the position vector of the debris object in the relative coordinate system.,
—Jt = the rate of rotation of the relative axes with respect to the inertial system.,

The required vector is Vr. Solving equation (A-1) for this vector yields
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S T T = =
Vr Vd Vt wy p

(A-2)

Writing this equation in matrix form in terms of the three-dimensional com-
ponents of each term results in

x a % * Px (A-3)
. _ . _ . _ ) <
y yd yt .vy )Oy

\.Z | Zd J L Zt 3 —UZ | pZ

Figure A-1 shows the orientation of the inertial velocity vector of the debris
object in terms of the flight path angle, y , and the angle between the debris
and target orbit planes, & (0 is derived in Appendix G). Resolving this
vector into its components in the directions of the relative coordinate axes
yields

X = _ A-
X4 Vdcosycos5 (A-4)
V4~ Vd sin vy

zy = Vdcosysm6

Since \-/t remains along the x-axis of the relative coordinate system,

its three components are

ktz -V, (A-5)
y= 0

z, = 0

t

Because of the way the relative coordinate system was defined (p. 4 -
second paragraph) it undergoes rotation about the z_axis only. Therefore,

= A6
w 0 ( )
w = 0
y
w = w
z t
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The rotational rate - is computed as
A
;u T —
T
t t
where
th the orbital period of the target satellite.
The relative velocity components of the debris satellite are computed

only when the debris satcllite passes through the orbit plane of the target
satellite. Therefore, the last matrix in equation (A-3) becomes

pX: Xd (A_7)
Py Yy
p,= 0
Substituting (A-4), (A-5), (A-6), and (A-7) into (A-3) yields
X [ _Vd cosy cos 5] --Vt [0 ] X4 (A-8)
y | = Vd sin y - 0 - 10 “ vy
z L—VdcosysinﬁJ 0 bth 0 J

Carrying out the matrix operations yields the relative velocity components

X = Vt _Vdcosycos(‘5+ W, Yy (A-9)
y = Vdsmy_wtxd
5 = Vdcos'ysinﬁ

The product Vd cosvy in the X and z equations can bhe replaced by
Cl/Rd’ where

C =R

1 OlVdcosy

>

is the angular momentum associated with the orbit of the debris satellite. Also

V can be written as a function of the true anomaly of the planar intersection
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line by noting that y is approximately equal to R Therefore,

&
. d ! p _ ep sinnmg (A-10)
AT (Rd) Codt ( 1+ e cosn )— (1+ e cosn)* :

Multiplying the right side of equation (A-10) by Rdz/Rd2 and noting that

= R 2y
C, =Ry

equation (A-10) changes to

. Cypesing _ (A-11)
Y T+ e cosn)‘Rd2

Since

R.2 — p2

d (1+ecosn)”

equation (A-11) reduces to

v= 48 sing (A-12)
p
Since
_C?
p= -t ,
y = £2 sinn (A-13)
C1

The relative velocity components are finally written as

X =V, - cosb + wtyd (A-14)
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Referring to Figure A-2, the debris path orientation angles are
- -1 (2
0= tan"! (¥ (A-15)

and

)
B= tan "
Comparing equations (A-15) with equations (A-9), it is found that

B=Ixy) . (A-16)

The technique used to calculate the collision distance (Appendix B) dictates

that 8 remain constant as X3 varies. Therefore, the X4

(A-9) (the ¥ equation) is considered to be zero since its value will always be
small (less than 1 m/s).

term in equations
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APPENDIX B

DERTVATION OF THE COLLISION DISTANCE, d

As stated in the text, the only varying quantity associated with succes-
sive passes of the debris satellite through the orbit plane of the target satel-
lite is the horizontal position of the intersection point. Figure 6 shows
several of these successive passes. This figure shows that if the debris
satellite passes through the target orbit plane within a distance of d/2 from

the y axis, then the debris object will intersect the sphere, thus defining a
collision. The distance d is a function of the three_-dimensional direction of
travel of the debris object and the altitude difference at plane intersection, y q

In order to determine d, the equation of the target sphere is first
solved simultaneously with the equations of the line of travel of the debris
object. This yields the coordinates of the points at which the debris path
intersects the sphere. The position of the debris intersection with the x, y
plane (x 3 Y d) is then varied in the x direction to generate the range of values

of x q which produces real (mathematically) intersection points with the target
sphere. The altitude difference y d is maintained constant as are the 8 and 0

angles defining the direction of travel. This range of values of x , is equal to

d
d. The derivation follows:

The equation of the sphere which represents the target satellite is

x2+ y2 + z2= R2, (B-1)
where R is the miss distance (or sphere radius). The equations which specify
the debris satellite trajectory, assuming that it travels in a straight line and

has the same direction as the relative velocity vector in the relative coordinate
system, are

y= (x_xd) tan B+ y, (B-2)

z=(x_xd) tang . (B-3)
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The parrameters x . and y g 2re the x and y coordinates, respectively, of the

d
point vvhere the debris satellite passes through the orbit plane of the target
satelliite, Figure 6 shows this geometrically. To find the intersectio n points
of the: debris trajectory with the target sphere, equations (B-2) and ( B-3)

are s;ubstituted into equations(B-1) and the terms are collected on x? and x,
yield.ing

ay X2+ byx+cy= 0 (B¢ L)
wheere

a;= 1+ tan’8+ tan’s (B _5)

by = 2y, tan B - 2X 4 (tan?3 + tan%s)

cy=x* tan’B - 2x y tanfB+ yd2+ x % tan% - R?

d &’a d
Solving equation (B-4) for x, the x-coordinates of the points where the 1i pe

of travel cuts the sphere are obtained:

by Nb% ~ 4agc (B-6)

* = 234 2a4

The y and z coordinates are given by equations (B-2) and (B-3).

In equation (B-6) above, if b;? = 4ac,, the debris trajectory is tan-
gent to the sphere; if b12 > 4a,c4, it intersects the sphere at two poin’ s; if
bf < 4a,cq, no intersection occurs. It is required to find the range of values
of x d which satisfy the inequality

b = 4daycy (B-7)

Substituting equations (B-5) into equation (B-7) and collecting te' rms on x dz

and x d yields

2
a X, + bzxd te, =0, (B-8)
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where

f, = -4(tan’8 + tan’) (B-9)

b2= 8yd tan B

¢, = 4UR? - y ) sec’y + R tan’s]

T ‘he solution of the above inequality is

dy d s P (B-10)
whe ‘Te€
and

% = -b, _'\/bz2_4a2c2

d2 2a, 23.2
The col lision distance, then, is
Nt
d = x oX = - b2 422C2 (B_l]_)
d, dy 2y

This is th e interval along the x-axis through which the debris object can pass
and inters ect the sphere.
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APPENDIX C

AREA DETERMINATION OF PROBABILITY VERSUS « HUMP,

To determine the dimersions of the humps in Figure 8, it is noted
that the maximum probability (for each AQ increment) as a function of w
occurs when the altitudes of the two bodies are equal at the line of intersection
between the orbit planes. When this occurs the value of yd goes to zero and

the cap that is cut off the sphere in Figure 7, becomes a hemisphere
causing the collision distance d to reach a maximum. The true anomaly of
the intersection line ( measured from the line of perigee in the debris orbit)

at which f{dz f{t is calculated as

p-R,
n = cos

max. eRt ) (C-1)

The sum of the true anomaly, 7, and the argument of perigee, w, is the
argument of latitude, u. Thus,

“max. T " "Tmax. (Cc-2)

Substituting the above value of w max into the probability expression

[ equation (5) in the text] yields the maximum collision probability as

d(w max,’ AQ) . (C-3)
AS

P =
max.

where
Pmax = the height of the probability hump of Figure 8.

To obtain the width of the hump, A w, it is required to find the values
of w where the probability goes to zero. The probability expression is set

equal to zero yielding

P = d/AS = 0
lap
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or

d=0 . (Cc-5)

Nb,? -
a= _ Vbl - 4mey . (C-6)
Ay
Therefore to satisfy equation (C-5)
where
a,= -4 (tan’3 + tan’p) (C-8)
b2= 8yd tan g
cy= 4[(R? - yd2) sec’d + R? tan’3]

Substituting equations (A-15) and (C-8) into (C-7) and solving for the

altitude difference, yd, yields

+ 2 + .2 e2 + 52
v, =+ R (Y% and Vg~ -R e (C-9)

1

where y and z are derived in Appendix A. The quantities Y4 and ¥y, are the
1 2

altitude differences between the two bodies where the collision probability
goes to zero. These two values are then used to calculate the orbital radius
of the debris satellite (at the line of intersection between the orbit planes)
at which the collision probability goes to zero as

R :R+

1 ] C—lo
d,2~ "t Yq,, ( )

The position (true anomaly) in the orbit of the debris satellite where this
radius occurs is

p-R

Ny,9= cos ™! dy,o , (C-11)
eRd
1,2
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where

p= the semilatus rectum

e = the eccentricity.
The arguments of perigee corresponding ton, and n, are expressed as

Whe=W=TNg2 > (C-12)
where

u = the argument of latitude (in the debris orbit) of the intersection
line.

The difference between w and w , is the width of the probability versus w
hump. Thus,

Aw = wy-wi=(u-my - (u-n)
or

Aw=1ny -1, . (C-13)
Aw is typically less than .5 deg for a miss distance of 50 m. The area of

the probability versus «w hump is then approximated as one-half of an ellipse
with the minor axis equal to Aw and the major axis equal to 2 Pma_x .

(Appendix D for justification). The approximate area of one hump is

A=%71P Aw (C-14)
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APPENDIX D

MATHEMAT ICAL JUSTIFICATION FOR
ELLIPTICAL APPROXIMATION OF INTEGRAL

Figure D_1 shows the target sphere and the two positions at which
the debris path can be tangent to the sphere. These two tangent points lie
on a small circle of the sphere. An edgewise view of this circle is shown
in Figure D-2 as seen by an observer looking down the x_axis in the +x direc-
tion. The plane of this circle is always perpendicular to the y_z plane since
yd, 0, and 8 remain constant for successive passes of the debris satellite

through the target orbit plane and the only variable is x In figure D-2, the

radius of the small circle is r and d
r’ = R? _ (yd cos o )2 . (D-1)
Since
o = ta.n—1<‘}-’;> ’
then
zZ
cos o = = :
Ve + z
Equation (D-1) can then be written
2 2 2 2? D
e’y () (P-2)

From Figure D-1, d can be related to r in terms of the relative velo-
city components by taking the dot product of Vr and i, a unit vector in the

x-direction, as follows:

Vr'1=Vrcos€=x . (D-3)
Therefore
X
€= —= ) D-4
cos Vr ( )
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Figure D-2. Edgewise view of the small circle in the target sphere
defined by passage of the debris object through the target sphere.



Squaring equation (D-4) and substituting it into the trigonometric identity

sin € = 1 _ cos? ¢ (D_5)

yields

sin“e=1 -~

B 5,2 + 'Z‘z

= —__Z_Vr

+2 L)
_ Yz . D_6
x2+j{2+ 7° ( )

From Figure D-1

sin € = 2% . (D-7)

Squaring equation (D-7), substituting equation (D-6), and solving for d?
results in

22 2, 52
X+ v+ oz
d?= 4r? [—-;2722—] ) (D-8)

Substituting (D-2) into (D-8) gives
2
2 2 2 ty +z . D-9
d 4|:R_yd<y+z>][y+z } ( )

Carrying out the multiplication yields

4R? (5(2+ S’2+ 22) _ 452 ()-(2+ S’2+ °22)

d?= s . 2
yo+ z° (" + z%)°? Ya
and upon rearranging,
d2+4'22(5(2+j'2+ ZE) 2 4R2(5(2+512+ 22) (D—].O)
\P i+t :

. .92
(y%+ 2%
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Both sides of equation (D-10) are divided by the right side to give
2

y
d? d
rogrss ey S gy ST (D-11)
Fy: 1 R AL L AL
yo+ 2 z
Since
d
Plap™ B35
then
& = P, ?2Ag? ) D-12
lap S ( )

Substituting (D-12) into (D-11) yields
2 2

lap Ya
4R* [kz + y¢ + z¢ R ye + z° =1 . (D-13)
AS? VT 2 Tz

The altitude difference, y e can be expressed as a linear function of

n (the true anomaly at which the intersection line occurs) by writing the
expression for Yq as a Taylor series. The expression for Yy is

y = = .___——P - R’ .
d=£(= {7 o oos 7 t (D-14)

The Taylor series of f(n) expanded about the point o is

f(n)=f(n )+ '(n ) (n —n0)+fn("o) (n-m )%+ ... i (D-15)
21

Substituting (D-14) into (D-15) and neglecting higher order terms (for small
An's) yields

_ P _ _ [ P(1-esinn )
Y4 [1 + e cosm Rt] [ 2 ] An ’ (D-16)
o (1+e cosno)

where
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This linear function is a close approximation to the actual function if An is
sufficiently small. A typical value for An is less than .5 deg.

Letting the constants in equation (D-16) be

P
a= —mm— - Rt (D-17)
1+ e cos no

and

-P(1 -e smno)

b= .
(1+e cosno)z ’ (D-18)

equation (D-16) then becomes

Ve~ a+bAn . (D-19)
If n, is chosen such that a= 0 [equation (D-17)], then

y,=ban . (D-20)
Substituting equation (D-20) into equation (D-13) yields

P 2

lap An2
4R [ xX°+ y* + z° + R? ry*+ z° =1 . (D-21)
AS? [ Vo + z° ] 4 |: z2 ]

This equation shows that the probability of collision versusn curve is ellipti-
cally shaped under the assumptions that (a) the velocity components of the
debris satellite remain constant over the width (An) of the ellipse, and (b)

the interval A7, for which a non-zero probability exists, is sufficiently small
to insure that y d is a linear function of n. These assumptions are not true only

when the debris satellite radius of perigee is within several target sphere
radii, R, of the radius of the target satellites orbital radius.
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APPENDIX E

EXTENS ION OF PROBABILITY PER LAP EXPRESSION
TO PROBABILITY FOR THE ENTIRE MISSION

Let ﬁlap be the probability, for each lap, that a debris satellite will

collide with the target satellite. The probability,_then, that a collision will
not occur during the first lap of the mission is LPIap' The theorem of

compound probability states that if A and B are any two independent events,
then

p(AB) = p(A) p(B) . (E-1)

Stating equation (E-1) informally, the probability that both A and B happen is
the probability that A happens times the probability that B then happens. Now
associating A with the probability of noncollision for the first lap and asso-
ciating B with the probability of noncollision for the second lap, the probability
of noncollision for both laps is

= (1 - 1-P
Pnc ( Plapl) ( 1ap2)
or
= P 2 -
Pp.=(Q Pap) ; (E-2)
since the probabilities of noncollision are equal for both laps (-ﬁla = 513. ).
The probability of noncollision for L laps is then Pt P>
= L
P _=(1- Plap) (E-3)
Since
Peottision * Froncollision ~ ' (E-4)
then the probability of collision with the jth satellite for a mission duration
consisting of L. laps is
= L
= (1 - _
Pm ( Plapj) (E-5)
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APPENDIX F

COLLISION PROBABILITY BETWEEN THE TARGET SATELLITE
AND ANY ONE OF THE TOTAL NUMBER OF DEBRIS SATELLITES

Let Pm be the probability of collision between the target satellite and
]
the jth debris satellite for the total mission. The objective is to derive an
expression for the probability that a collision will occur with any debris object
considering the entire debris population. The principle of compound probability
as explained in Appendix E applies in this case also. The difference here is
that the individual satellite probabilities, Pm , will not be equal in general,

]
Thus, the total collision probability is written as

d
Prop = ! - H (1-P )
=1 J
where
n . = the total number of debris satellites in earth orbit.

d
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APPENDIX G

DETERMINAT ION OF THE ANGLE BETWEEN TWO ORBIT PLANES

Figure G-1 shows the projections of two orbit paths onto a spherical
earth. The orbits represented by these projections are inclined to the equa-

torial plane by amounts i 4

found in terms of the known quantities, i

and it. The angle between the planes, 6, can be

ar 't

, and AQ by considering the

oblique spherical triangle ABC. The relations between the sides and angles of
this triangle are completely specified by Napier's analogies. The equations
are as follows:
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(i - i

sin

4

tan 3 (o - A)

(Sl B S

sin

(i

'
t
'
t

cos%;(i% - i)

+ id)

T fan s (AQ)

cos %(i{ + i

sin3 (o - A)

tan 3 (o + A)
tan 3 (AQ)

t 1o s
ang(lt 1d)

sin 3 (¢ + A)

cos 3(a - A)

cot 50

}; I’z + i
tan_(lt 1d)

cos 3 (o0 +A)

cos 3 O

(G-1)

(G-2)

(G-3)

(G-4)
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Equations (G-1), (G-2), and (G-4) are sufficient to find /5. First,

(0-N . (a;x)

solve equations (G-1) and (G-2) for

respec tively, to

obtain 2
(0 -2) _ tan~! [sin (@ "o i )escs (i - i ) tary %AQ] (G-5)
2 t d t d
and
(0‘ + 7\) _ -1 [ .y . 1 [y .
5 = tan cos % (1t - 1d) sec 3 (1t + 1“)
tan %AQ] . (G-6)

Substittuting equations (G-5) and (G-6) into (G-4) to elimin ate the unknown
quantirties and then solving for 0 yields

5= 2cot™ [tan 3 (1{ + id) cos tan™" (;) sec tan™? (k)-J , (G=17)

where
j = cos %(1% - id) sec%(i{ + id) tan S AQ
and
k = sin%(i,'C - id) cse %(ii+ id) tan 3 AS2 .

Noting from Figure G-1 thati! = 7 - i, and substii .uting this into equation
. t t
(G-17) results in

5= 2cot™ [cot 3 (it - id) cos tan™! (j'') sec tan™! (k')J » (G-8)
where

AQ

Dol

9= ain L (3 A L(s s
j sin 3 (1t n 1d) csc 2(11; 1d) tan
and

k' = cos%(it 4+ i
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